CANDIDATES NAME:....

INDEX NUMBER								
								SIGNATURE:

545/1 CHEMISTRY PAPER 1 JUNE/JULY 1 HOUR 30 MINUTES

MOCK EXAMINATIONS SET 1 2019

Uganda Certificate of Education

CHEMISTRY PAPER 1

1 HOUR 30 MINUTES

INSTRUCTIONS TO CANDIDATE:

- * This paper consists of 50 objective type questions.
- * Answer all questions.
- * You are required to write the correct answer A, B, C or D in the box provided on the right hand side of each question.
- * Do not use pencil.

1.	Whic A. C.	ch one of the hydrogen dinitrogen		ving gases re	lights a B. D.	a glowing sp nitrogen nitrogen m		de	
2.	Whic A. C.	ch of the follo Na ₂ CO ₃ an MgSO ₄ and	d (NH	4)2CO3	can be B. D.	e separated Pb(NO ₃) ₂ a ZnCO ₃ and	and Pb	Cl ₂	
3.		ch one of the veen zinc and manganese vanadium (l dilute e (IV)	e hydrochlorio oxide		alter the ra copper (II) iron (III) c) sulph	ate	
4.	Whic	ch one of the	follow	ving oxides is	solub	e in both dil	ute nit	ric acid and	I
conc	entrat A.	ed sodium hy Al ₂ O ₃	/droxid B.	le solution? CuO	C.	SO₂	D.	Fe ₂ O ₃	
5.		atomic numb element whic R							
6.		molecular for 14, O = 16, SO ₂			mole o		-		
7.	The A. C.	process by w polymerisa saponificat	tion	hysical prope	erties o B. D.	of natural rul vulcanisati cracking		re improvec	l is:
8.		n ³ of a mono onate. The r	nolarit					05m sodiun	n
	Α.	$\frac{25 \times 0.05 \times 0.05 \times 0.05}{2.0}$	<u> </u>		В.	$\frac{25 \times 0.05}{20}$ N	Ν		
	C.	$\frac{25 \text{ x } 0.05}{2 \text{ x } 20} \text{ M}$			D.	$\frac{20 \times 0.05}{25}$	<u>x 2</u> M		
9.		ch one of the lid residue?	follow	ving carbonat	tes wh	en heated de	ecomp	oses withou	ıt leaving
	A.	magnesium	n carbo	onate	В.	copper (II)) carbo	onate	
	C				Р	ammonium			

C. lead (IV) carbonate D. ammonium carbonate

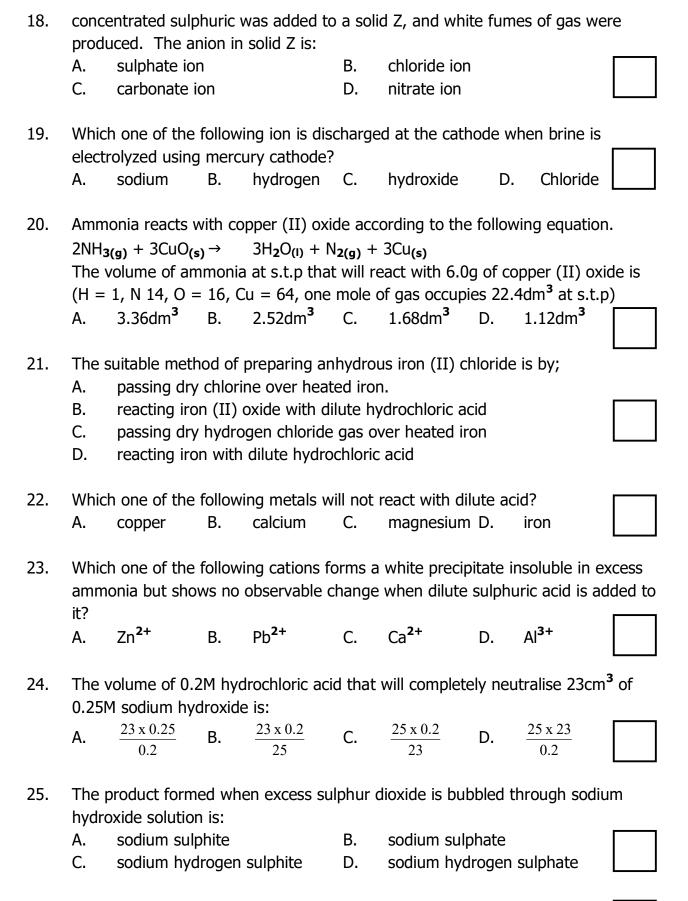
10. The order of reactivity of the elements X, Y and Z is Z>X>Y. Which one of the following equations represents possible reaction?

Α.	$Y_{(s)} + X^{2+}_{(aq)}$	$X_{(s)} + Y^{2+}_{(aq)}$
В.	$Z_{(s)} + Y^{2+}_{(aq)}$	 $Z^{2+}_{(aq)} + Y_{(s)}$
C.	$Y_{(s)} + Z^{2+}_{(aq)}$	 $Y^{2+}_{(aq)} + X_{(s)}$
D.	$X_{(s)} + Z^{2+}_{(aq)}$	 $Z_{(s)} + X^{2+}_{(aq)}$

- 11. Which one of the following sets of compounds belong to the same homologous series?

Α.	C₂H₄,	C₃H₀	and	C₄H ₈
В.	С 2 Н6,	C_2H_2	and	C₃H8
C.	C2H2,	C₃H₀	and	C4H10
D.	С 2 Н6,	C 4 H8	and	C ₃ H 8

12. The structure of an atom of element M is ${}^{27}_{13}M$. Which one of the following is the number of electrons in the outer most energy level of the particle M³⁺? A. 13 B. 10 C. 8 D. 3


- 13. Which of the following compounds in water does not contain ions?A. ethanolC. sodium hydroxideD. ammonia
- 14. 5g of an organic compound C_2H_6O when burnt raised the temperature of 500g of water from $15^{0}C$ to $90^{0}C$. The molar heat of combustion of the compound is: $(C = 12, H = 1, O = 16, \text{ specific heat capacity of water is } 4.18Jg^{-10}C^{-1})$

Α.	- 1249.82Kjmol ⁻¹	В.	- 135.85Kjmol ⁻¹
C.	- 167.20Kjmol ⁻¹	D.	- 1538.24Kjmol ⁻¹

15. The percentage of Aluminium in hydrated Aluminium sulphate $Al_2(SO_4)_3$ nH2O is 8.1%. The value of n in the hydrated compound is (H = 1, O = 1, Al = 27, S = 32) A. 10 B. 18 C. 16 D. 12

- 16. Which one of the following substances will dissolve in water to give a solution that turns red litmus blue.
 - A.
 NaCl
 B.
 CH₃COOH

 C.
 K₂CO₃
 D.
 (NH₄)₂SO₄
- 17.Which one of the following is an example of unsaturated hydrocarbon?A. C_3H_8 B. C_2H_6 C. C_4H_{10} D. C_3H_6

26. Which one of the following metals can be extracted by reduction process? A. sodium B. copper C. potassium D. calcium

27.	The A. C.	gas produce chlorine hydrogen s		-	ochlori B. D.	c acid is add hydrogen hydrogen o			ohide is:
28.		ch one of the ed strongly?	follow	ing substanc	es is r	ot formed w	vhen co	opper (II) r	nitrate is
	Α.	02	В.	CuO	C.	NO ₂	D.	NO	
29.	evol ^ı (Mol	g of metal Y ving 180cm ³ ar gas volum	of hyd ie at s.	rogen gas at t.p is 22.4dn	: s.t.p. 1 ³)	The relative	e atom	ic mass of	
	Α.	23.5	В.	42.2	C.	11.8	D.	30.2	
30.		nent Y has at	omic n	umber 14. T				hydride of	Y is;
	А. С.	ionic bond dative bon	d		B. D.	covalent b metallic bo			
31.	Whice A.	ch one of the copper (II)		-	es will B.	conduct ele sulphur	ectricity	in solid st	ate?
	C.	copper	·		D.	silicon dio	kide		
32.	T	hich of the f	ollowin	a reactions i	c culok	uric acid ha	havina	as an ovid	licina
	ager	hich of the font ht?	5110 00111	g reactions i	s suipi	iunic aciu de	naving		lising
		nt?		$CO_3(s) \rightarrow Cu$			-		lisiing
	ager	nt? H₂SO₄(aq)	+ CuC	-	ıSO₄(a	q) + H ₂ O(I)	-		
	ager A.	nt? H₂SO₄(aq) H₂SO₄ (aq)	+ CuC + Cu(:0₃(s) → Cu	ıSO₄(a SO₄(ac	q) + H ₂ O(l) q) + H ₂ O(l)	+ CO ₂	(aq)	
	ager A. B.	nt? H₂SO₄(aq) H₂SO₄ (aq) 2H₂SO₄ (ac	+ CuC + Cu(q) + C(CO₃(s) → Cu D(s) →Cu	ıSO₄(a SO₄(ao O₂(g)	q) + H ₂ O(l) q) + H ₂ O(l) + CO ₂ (g) -	+ CO ₂	(aq)	
33.	ager A. B. C. D. 40cr acco 2CO	nt? H₂SO₄(aq) H₂SO₄ (aq) 2H₂SO₄ (aq) 2H₂SO₄ (aq) H₂SO₄(aq) m ³ of carbon ording to the (g) + O₂(g) - volume of th	+ CuC + CuC q) + C(+ Mg(dioxide equation e gas f	$CO_3(s) \rightarrow CL$ $D(s) \rightarrow CL$ $O(s) \rightarrow 2S$ $OH)_2(s) \rightarrow M$ reacted without below. $\longrightarrow 2CO_2$	ISO₄(a SO₄(ad O₂(g) IgSO₄(a IgSO₄(a th 40cr 2(g) unread	q) + $H_2O(I)$ q) + $H_2O(I)$ + $CO_2(g)$ - aq) + $H_2O(I)$ m ³ of oxygen	+ CO ₂ (+ 2H ₂ C	(aq))(l) rbon dioxic	
	ager A. B. C. D. 40cr acco 2CO The A. Sea wate	nt? H₂SO₄(aq) H₂SO₄ (aq) 2H₂SO₄ (aq) 2H₂SO₄ (aq) H₂SO₄(aq) m ³ of carbon ording to the (g) + O₂(g) - volume of th	+ CuC + CuC + CuC + C(+ Mg(dioxide equation e gas t B.	$CO_3(s) \rightarrow Cut D(s) \rightarrow Cut(s) \rightarrow 2StOH)_2(s) \rightarrow Mte reacted witton below. \longrightarrow 2CO_2that was leftton 40cm^3$	ISO₄(a SO₄(ac O₂(g) IgSO₄(a IgSO(a))) IgSO(a IgSO(a))) IgSO(a	q) + $H_2O(I)$ q) + $H_2O(I)$ + $CO_2(g)$ - aq) + $H_2O(I)$ m ³ of oxygen cted is: 80cm ³ chlorine was	+ CO ₂ + 2H ₂ C n to ca D.	(aq))(l) rbon dioxic 30cm ³ ed through	de

35. Two gases X₂ and Y₂ react to form a gaseous compound XY3 according to the following equation.

 $X_{2(g)} + 3Y_{2(g)} \Leftrightarrow 2XY_{3(g)}$ DH = -44KJ. The yield of XY₃ can be increased by:

- A. increasing volume and lowering temperature
- B. decreasing volume and lowering temperature
- C. increasing temperature and decreasing volume
- D. increasing temperature and increasing volume
- 36. Which one of the following substances is used in both preparation of oxygen and chlorine?

A. MnO_2 B. $KCIO_3$ C. $KMnO_4$ D. $MnSO_4$

- 37. 0.5g of impure copper (II) oxide reacted with 50cm3 of 0.1m nitric acid according to equation below.
 CuO_(s) + 2HNO_{3(aq)} → Cu(NO₃)_{2(aq)} + H₂O_(I)
 The percentage of the copper (II) oxide in the impure sample is (Cu = 64, O = 16, N = 14, H = 1)
 - A. $\frac{80 \times 50 \times 0.1}{0.5}\%$ B. $\frac{80 \times 50 \times 0.1}{20}\%$
 - C. $\frac{80 \times 50 \times 0.1}{10}\%$ D. $\frac{50 \times 0.1 \times 10}{80}\%$
- 38. The residual gas produced when dry air is passed through concentrated sodium hydroxide and then over heated copper is:
 - A.oxygenB.carbon dioxideC.hydrogenD.nitrogen
- 39. Which one of the following will give a visible change when solution of sodium sulphate is added to it?
 - A. Mg^{2+} B. Ba^{2+} C. Zn^{2+} D. Al^{3+}
- 40. A compound P has molecular mass of 60 and contains 40% carbon, 6.71% hydrogen while the rest is oxygen. The molecular formula of P is?

CH2O B. C₂H₄O C. $C_2H_4O_2$ Α. D. CH₄O₂

Each of the questions 40 to 45 consists of an assertion (statement) on the left hand side. Select;

- A. If both assertion and reason are true statements and the reason is a correct explanation for the assertion.
- B. If both assertion and reason are true statements but the reason is not a correct explanation for the assertion.
- C. If the assertion is true but the reason is not a correct statement.
- D. If the assertion is incorrect but the reason is a true statement.

	ASSERTION	REASON
Α	True	True (correct explanation)
В	True	True (Not correct explanation)
С	True	Not correct
D	Not correct	True statement

SUMMARY OF INSTRUCTIONS.

40. Concentrated sulphuric acid is Sulphuric acid has a high because affinity for water used as a drying agent 41. Hydrochloric acid reacts faster Magnesium powder because provides a greater with magnesium ribbon that magnesium powder surface area of contact 42. A mixture of ammonium chloride because The salts have a common and sodium chloride can be anion separated by sublimation 43. Elements of group (I) of the because Their valency electrons periodic table are very electro and strongly attracted by positive the nucleus. 44. When copper (II) sulphate because No copper ions leave the solution is electrolysed using solutions as copper copper electrodes, the intensity of the blue colour remains unchanged because 45. Galvanised iron does not rust Zinc forms a protective layer on the surface of iron

In each of the questions 46 to 50, one or more of the answers given may be correct, read each question carefully and then indicate the correct answer according to the following.

- A. If 1, 2, 3 only are correct.
- B. If 1, 3 only are correct.
- C. If 2, 4 only are correct.
- D. If 4 only is correct.
- 46. When copper powder is added to a solution zinc sulphate.
 - 1. a black solid is formed 2. A grey solid is formed
 - 3. The solution fades in colour 4. No reaction takes place
- 47. The following are the main sources of water pollution.
 - 1. Sewage 2. Photosynthesis
 - 3.Detergents4.Rain water
- 48. The element X has atomic number 7. The element;
 - 1. Hasrelative atomic mass 7
 - 2. Is a non metal
 - 3. Has two electrons in the outermost shell
 - 4. Reacts by gaining of electrons

49. The observation (s) made when a burning magnesium ribbon is plugged into a jaw of carbon dioxide is / are

- 1. Bright light 2. White ash
- 3.Black solid4.Colourless gas
- 50. Which of the substances below contain the same number of moles as 224cm³ of oxygen at s.t.p? (Molar gas volume at s.t.p = 22.4dm³)
 - 1. 30cm³ of 0.6m HCl
 - 2. 2.4dm³ of HCl (g) at room temperature
 - 3. 3.64g of PbO (Pb = 207, O = 16)
 - 4. 0.32 of oxygen gas